Физические свойства
Газообразный водород может существовать в 2х формах (модификациях) — в виде орто — и пара-водорода. В молекуле ортоводорода (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Разделить аллотропные формы водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону параводорода. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно, что дает возможность изучить свойства отдельных аллотропных форм. Молекула водорода двухатомна — Н₂. При обычных условиях — это газ без цвета, запаха и вкуса. Водород — самый легкий газ, его плотность во много раз меньше плотности воздуха. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые легкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в 7 раз выше теплопроводности воздуха.
Водородный двигатель: типы, устройство,принцип работы
ТИПЫ ВОДОРОДНЫХ ДВИГАТЕЛЕЙ
Первый тип водородного двигателя работает на топливных элементах. К сожалению, водородные двигатели данного типа до сих пор имеют высокую стоимость. Дело в том, что в конструкции содержаться дорогие материалы вроде платины.
Ко второму типу относятся водородные двигатели внутреннего сгорания. Принцип работы таких устройств сильно напоминает пропановые модели. Именно поэтому их часто перенастраивают для работы под водород. К сожалению, КПД подобных устройств на порядок ниже тех, что функционируют на топливных элементах.
УСТРОЙСТВО И ПРИНЦИП РАБОТЫ
Главное отличие двигателей на водороде от привычных нам сейчас бензиновых либо дизельных аналогов заключается в способе подачи и воспламенении рабочей смеси. Принцип преобразования возвратно-поступательных движений КШМ в полезную работу остается неизменным. Ввиду того что горение топлива на основе нефтепродуктов происходит медленно, камера сгорания наполняется топливно-воздушной смесью немного раньше момента поднятия поршня в свое крайнее верхнее положение (ВМТ). Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе не обязано быть высоким (4 атм. достаточно).
В идеальных условиях водородный двигатель может иметь систему питания закрытого типа. Процесс смесеобразования происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, который проходя через радиатор, конденсируется и превращается обратно в Н2О. Такой тип аппаратуры возможен в том случаи, если на автомобиле установлен электролизер, который отделит с полученной воды водород для повторной реакции с кислородом.
На практике такой тип системы осуществить пока что сложно. Для исправной работы и уменьшения силы трения в моторах используется масло, испарения которого являются частью отработанных газов. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.
Двигатель на водородных топливных элементах
Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте. Топливный элемент на водороде фактически представляет собой «батарейку»
Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод
Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.
В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной). Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода. В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.
Такая реакция образует воду, при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.
Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде.
Что такое водородное топливо?
Водородное топливо поставляется на заправки в газообразном или жидком состоянии. Водород в этом виде уменьшается в объёме более чем в 800 раз. Примерное время одной заправки составляет не более 3-5 минут. Для сравнения – заправка бензином занимает примерно то же самое время.
На чём ездит водородный автомобиль? На водороде – экологически чистом источнике энергии.
Водород для топлива добывают следующими способами:
- Электролиз воды. Это выделение водорода из воды с помощью электричества. Такой метод применяется в тех регионах, где стоимость электроэнергии дешёвая, в том числе и в России. Чистота выхода водорода при помощи электролиза – около 100%! Но здесь присутствует повышенное загрязнение окружающей среды. Предсказывают, что когда-нибудь будут созданы множество солнечных и ветряных электростанций, которые будут производить топливо без отрицательного воздействия на окружающую среду.
- Паровая конверсия метана. Этот природный газ нагревают до температуры 1000 градусов по Цельсию и смешивают с катализатором. Этот метод будет работать до тех пор, пока метан не закончатся в недрах земли. Реформированный водород – самый популярный и дешёвый метод создания.
- Газификация биомассы. Это извлечение водорода в реакторе из отходов животных и сельского хозяйства, а также сточных вод. Сейчас существуют огромные территории с биомассой, потенциал которой не оценён и тратится впустую.
В чём преимущество этого альтернативного источника энергии?
- Топливные элементы не выделяют вредных выбросов.
- Огромный потенциал и возможные прибыли.
- Моментальная заправка автомобилей (3 минуты).
- Топливные ячейки на 80% эффективнее бензина, а также дёшево стоят.
Автомобиль на водороде не оставляет так называемого «углеродного следа», который загрязняет окружающую среду. Например, Toyota Mirai за 100 км пробега выделяет 5 л воды и больше ничего, никаких выбросов в атмосферу. Но, к сожалению, на Земле слишком не существует месторождений чистого водорода, а вот нефти и газа – хоть отбавляй. Зато водорода полным-полно в атмосфере, но в виде соединений, которые надо разрушить, чтобы извлечь желанный элемент. А для этого надо затратить немалую энергию, по сравнению с той, которую мы получим при прямом расходовании водорода.
Ещё одна хорошая статья: Амортизатор автомобиля: что такое, как работает, конструкция, типы, схема
История
Почти половина добываемой в мире нефти идет на производства топлива для машин. Водород в качестве замены классическому «черному золоту» рассматривается уже давно. Причина проста – запасов данного вещества на планете достаточно, чтобы тысячелетиями «кормить планету». Кроме этого, водород несложно выделить из воды, поэтому с поиском ресурсов проблем нет. Единственная сложность – перевозка и хранение, но и данные вопросы уже решаются.
Первая установка, работающая на водороде, появилась в 1841 году (речь идет о запатентованной версии). Уже через 11 лет в Германии удалось построить ДВС, который мог работать на смеси двух элементов – водорода и воздуха. На известном миру дирижабле Гиндебург стоял мотор, работающий на светильном газе (в его составе было половина водорода). Но после трагедии с дирижаблем в 1937 году и гибели 37 человек интерес к водороду, как топливу, временно был утерян.
Но уже в 70-х годах 19 века разработчики снова вернулись к созданию водородного двигателя
На современном этапе важность усовершенствования и активного внедрения таких технологий обсуждается на самом высоком уровне. Популярность обусловлена и ростом цен на нефтепродукты, что заставляет многие страны искать реальные и доступные альтернативы.
Идею создания водородного двигателя не только подхватили, но и внедрили в жизнь такие популярные производители, как Хонда Моторз, Дженерал Моторз, Форд, БМВ и прочие.
Устройство и особенности работы
Проблема бензиновых двигателей заключается в
том, что топливо горит долго и занимает пространство КС несколько ранее, чем
поршень принимает нижнее положение. Принцип работы водородного двигателя таков:
быстрая реакция H2 сдвигает время впрыска ближе ко времени возвращения поршня к
крайнему нижнему положению. При этом давление в структуре подачи топлива
повышается незначительно.
Водородный мотор может образовать внутреннюю
систему питания, когда смесь образуется без участия воздуха. Проще говоря,
после очередного такта сжатия в КС образуется пар, затем он следует через
радиатор, где, конденсируясь, опять становится водой. Но устройство может быть
реализовано только на автомобиле с электролизером, который выделяет водород из
воды, чтобы тот снова смог взаимодействовать с кислородом. Сейчас добиться
этого почти невозможно, ведь для стабилизации работы моторов применяется
техническое масло, а, испаряясь, оно становится составной частью выхлопа. Поэтому
бесперебойный запуск мотора невозможен без воздуха.
Устройство автомобиля с водородным двигателем
Водородный двигатель: дальнейшие перспективы
Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.
Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.
Также не особенно большим является и сам выбор водородных легковых авто. Кроме Honda Clarity можно разве что упомянуть Mazda RX8 Hydrogen, а также BMW Hydrogen 7. Фактически это автомобили-гибриды, которые работают на жидком водороде и бензине. Еще можно добавить в список Mercedes GLC F-Cell. Эта модель имеет возможность подзарядки от бытовой сети электропитания и позволяет пройти до 500 км. на одном заряде.
Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.
Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.
Прежде всего, это безопасность и сложность транспортировки такого топлива
Важно понимать, что водород весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить
Получается, необходимо строить особые водородные резервуары для авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.
К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.
Перспективы
Использование такого газа как водород потенциально может открыть невероятные большие перспективы. Причём здесь речь идёт не только про автомобильный двигатель внутреннего сгорания, работающий на водороде, но и про целый ряд других сфер применения. В их числе авиация, железнодорожный транспорт, морские суда и пр. Помимо применения в ДВС, водород также может использоваться для питания и работы вспомогательной техники, механизмов и разного оборудования.
Уже сейчас ведущие автопроизводители уделяют большое внимание возможности внедрить в массовое производство водородные ДВС. Среди них такие гиганты как Volkswagen, General Motors, Toyota, BMW и пр. В настоящее время существуют автомобили, под капотом которых находятся водородные силовые установки
При этом они отлично функционируют, мало чем уступают традиционным ДВС на бензине и дизтопливе, а также обладают некоторыми существенными преимуществами
В настоящее время существуют автомобили, под капотом которых находятся водородные силовые установки. При этом они отлично функционируют, мало чем уступают традиционным ДВС на бензине и дизтопливе, а также обладают некоторыми существенными преимуществами.
Чтобы говорить о серьёзных перспективах и массовом внедрении водорода, требуется решить хотя бы несколько главных недостатков. Эксперты уверены, что при наличии способа уменьшить стоимость газа, а также при постройке большего количества АЗС и обучении кадров для обслуживания водородных моторов, множество таких машин обязательно станут нормой на дорогах.
Технологии-конкуренты
Автопроизводители пока не могут или не хотят в полной мере сконцентрироваться на водородных технологиях, поскольку у неё есть ряд серьёзных конкурентов.
Можно выделить следующие виды моторов, которые не дают водородным ДВС и топливным элементам на водороде развиваться, совершенствоваться и массово выходить на рынок.
- Гибридные установки. Это автомобили, способные использовать одновременно несколько источников энергии. Зачастую в машину внедряют обычный ДВС и электромотор. Также бывают варианты, когда обычный двигатель на бензине работает вместе с узлом, питающимся сжатым воздухом.
- Электрокары. Сейчас активно развиваются и распространяются полностью электрические авто. Это машины, которые двигаются за счёт работы одного или нескольких электромоторов. Они питаются от специальных аккумуляторов или топливных элементов. ДВС здесь не используют.
- Жидкий азот. Вещество помещается в специальные ёмкости. Сам процесс работы выглядит так. Топливо нагревается за счёт работы специального механизма. Это приводит к испарению и образованию газа высокого давления. Этот газ идёт в двигатель, где воздействует на поршни или роторы, передавая свою энергию. Пока такие авто не получили широкого распространения.
- Сжатый воздух. Здесь основой всей силовой установки выступает пневмодвигатель. Пневматический привод заставляет машину двигаться. Топливовоздушная смесь заменена на сжатый воздух. Эта система является частью современных гибридных автомобилей.
У водорода достаточно много конкурентов. И в настоящий момент самым главным соперником справедливо считается электродвигатель.
Насколько сильно ситуация изменится в ближайшие несколько лет, говорить сложно. О каких-то резких изменениях и открытиях говорить вряд ли стоит. Но есть вероятность того, что через 10-20 лет водород станет куда более эффективным и доступным. Тем самым начнут появляться серийные водородные автомобили в большом количестве. Примерно так сейчас обстоят дела с электрокарами.
Описание и принцип работы водородного генератора
Есть несколько методик выделения водорода и из других веществ, перечислим наиболее распространенные:
- Электролиз, данная методика наиболее простая и может быть реализована в домашних условиях. Через водный раствор, содержащий соль, пропускается постоянный электрический ток, под его воздействием происходит реакция, которую можно описать следующим уравнением: 2NaCl + 2H2O→2NaOH + Cl2 + H2↑. В данном случае пример приведен для раствора обычной кухонной соли, что не лучший вариант, поскольку выделяющийся хлор является ядовитым веществом. Заметим, что полученный данным способом водород наиболее чистый (порядка 99,9%).
- Путем пропускания водяного пара над каменноугольным коксом, нагретым до температуры 1000°С, при таких условиях протекает следующая реакция: Н2О + С ⇔ СО↑ + H2↑.
- Добыча из метана путем конверсии с водяным паром (необходимое условие для реакции – температура 1000°С): СН4 + Н2О ⇔ СО + 3Н2. Второй вариант – окисление метана: 2СН4 + О2 ⇔ 2СО + 4Н2.
- В процессе крекинга (переработки нефти) водород выделяется в качестве побочного продукта. Заметим, что в нашей стране все еще практикуется сжигание этого вещества на некоторых нефтеперерабатывающих заводах ввиду отсутствия необходимого оборудования или достаточного спроса.
Из перечисленных вариантов последний наименее затратный, а первый наиболее доступный, именно он положен в основу большинства генераторов водорода, в том числе и бытовых. Их принцип действия заключается в том, что в процессе пропускания тока через раствор, положительный электрод притягивает отрицательные ионы, а электрод с противоположным зарядом – положительные, в результате происходит расщепление вещества.
Конструктивные особенности и устройство генератора водорода
Если с получением водорода проблем сейчас практически нет, то его транспортировка и хранение до сих пор остается актуальной задачей. Молекулы этого вещества настолько малы, что могут проникать даже сквозь металл, что несет определенную угрозу безопасности. Хранение в абсорбированном виде пока не отличается высокой рентабельностью. Поэтому наиболее оптимальный вариант – генерация водорода непосредственно перед его использованием в производственном цикле.
Для этой цели изготавливаются промышленные установки для генерации водорода. Как правило, это электролизеры мембранного типа. Упрощенная конструкция такого устройства и принцип работы приведен ниже.
Упрощенная схема водородного генератора мембранного типа
Обозначения:
- А – трубка для отвода хлора (Cl2).
- B – отвод водорода (Н2).
- С – анод, на котором происходит следующая реакция: 2CL — →CL2 + 2е — .
- D – катод, реакцию на нем можно описать следующим уравнением: 2Н2О + 2е — →Н2 + ОН — .
- Е – раствор воды и хлористого натрия (Н2О & NaCl).
- F – мембрана;
- G – насыщенный раствор хлористого натрия и образование каустической соды (NaОН).
- H – отвод рассола и разбавленной каустической соды.
- I – ввод насыщенного рассола.
- J – крышка.
Обозначения:
- а – трубка для отвода газа Брауна;
- b – впускной коллектор подачи воды;
- с – герметичный корпус;
- d – блок пластин электродов (анодов и катодов), с установленными между ними изоляторами;
- e – вода;
- f – датчик уровня воды (подключается к блоку управления);
- g – фильтр водоотделения;
- h – подвод питания, подаваемого на электроды;
- i – датчик давления (подает сигнал блоку управления при достижении порогового уровня);
- j – предохранительный клапан;
- k – отвод газа с предохранительного клапана.
Рекомендации по изготовлению
Зная технологию получения водородного топлива и обладая определенными навыками, в домашних условиях можно сделать водородный генератор своими руками. Сегодня существует несколько работоспособных схем, позволяющих создать такую установку. Причем в отличие от классического устройства, в самодельном электроды помещаются не в емкость с водой, а сама жидкость поступает в зазоры между пластинами. Перед началом проведения работ по изготовлению водородной установки своими руками следует внимательно изучить чертежи.
Выбор материалов
Чаще всего домашние мастера сталкиваются с проблемой выбора электродов. С созданием топливной ячейки ситуация более простая и сегодня существует два основных типа генераторов водорода — «мокрый» и «сухой». Для создания первого можно использовать любой контейнер, имеющий достаточный запас прочности и газонепроницаемости. Оптимальным выбором можно считать корпус от аккумулятора старого образца для легковой машины.
Лучшими электродами будут пластины (трубки) из нержавейки. В принципе можно использовать и черный металл, но он быстро подвергается коррозии и такие электроды требуют частой замены. Совершенно иначе дело обстоит при использовании высокоуглеродистых сплавов, легированных хромом. Примером такого материала является нержавейка марки 316L.
При использовании трубок, они должны подбираться так, чтобы при установке одного элемента в другой между ними был обеспечен зазор величиной не более одного миллиметра
Не менее важной деталью генератора водорода для автомобиля является ШИМ-генератор. Именно благодаря правильно собранной электросхеме можно регулировать частоту тока, а без этого добывать водород не представляется возможным. Для создания водного затвора (бабблера) можно использовать любую емкость, обладающую достаточным показателем герметичности
При этом ее желательно оснастить крышкой, которая плотно закрывается, но при возгорании ННО внутри сразу будет сорвана. Для предотвращения возврата газа Брауна в топливную ячейку, рекомендуется установить отсекатель между водным затвором и электролизером
Для создания водного затвора (бабблера) можно использовать любую емкость, обладающую достаточным показателем герметичности. При этом ее желательно оснастить крышкой, которая плотно закрывается, но при возгорании ННО внутри сразу будет сорвана. Для предотвращения возврата газа Брауна в топливную ячейку, рекомендуется установить отсекатель между водным затвором и электролизером.
Сборка устройства
Для создания кислородного генератора лучше выбрать «сухую» топливную ячейку, а электроды стоит изготовить из нержавейки. Именно она пользуется наибольшей популярностью среди домашних мастеров
Также важно придерживаться определенной последовательности действий:
По размеру генератора необходимо нарезать пластины из органического стекла или органита, которые будут использоваться в качестве боковых стенок. Оптимальными размерами для топливной ячейки являются 150х150 или 250х250 мм.
В корпусных деталях необходимо просверлить отверстия для установки штуцеров для жидкости, одно для ННО и 4 крепежных.
Из стали марки 316L изготавливаются электроды, размер которых должен быть на 10−20 мм меньше в сравнении с боковыми стенками. В одном из углов каждого электрода необходимо сделать контактную площадку для соединения их в группы, а также подключения к источнику питания.
Чтобы увеличить количество получаемого в электрогенераторе газа Брауна, электроды следует обработать наждачной бумагой с каждой стороны.
В пластинах сверлятся отверстия диаметром 6 мм (подача воды) и 8−10 мм (отвод газа). При расчете мест сверления необходимо учитывать месторасположение патрубков.
Сначала в пластины из оргстекла монтируются штуцера и хорошо герметизируются.
В одну из корпусных деталей устанавливаются шпильки, а затем укладываются электроды.
Электродные пластины отделяются от боковых стенок прокладками из паронита либо силикона. Аналогичным образом необходимо изолировать и сами электроды.
После установки последнего электрода монтируются уплотнительные кольца и генератор закрывается второй стенкой. Сама конструкция скрепляется с помощью гаек с шайбами
В этот момент крайне важно следить за равномерностью затяжки крепежных элементов и не допустить перекосов.
Топливная ячейка подключается к емкости с жидкостью и водному затвору.
После соединения групп электродов в соответствии с их полюсом, генератор подключается к ШИМ-генератору.
История создания водородного двигателя
Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.
Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.
Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.
Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.
Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).
Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.
Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.
Мотор на водородных топливных элементах
Водородными двигателями принять считать не только аппараты, функционирующие на водороде, но и двигатели, в которых применены топливные компоненты на водороде. Топливный водородный компонент является аналогом обычной батарейки. Такой аккумулятор с участием водорода обладает значительным КПД – приблизительно 50%. Механизм взаимодействует на основе химико-физических реакций.
Тело такого аккумулятора оснащено мембраной, она разделяет две ячейки с электродами: в одном происходит окисление, в другом – процесс восстановления. В ячейку с процессом окисления (анод) заходит водород, а в ячейку с катодом (восстановительная реакция) – кислород.
Соответственно, двигатель функционирует благодаря топливному элементу на водороде. На одном заряде водородный мотор может проработать 200 км. Однако, топливные компоненты имеют повышенную стоимость благодаря наличию в конструкции дорогостоящих металлов. Также водородные камеры подлежат замене через 250 тыс. км пробега. Поэтому цена транспортного средства с водородным мотором стандартно выше, чем у привычных автолюбителю средств передвижения.
В настоящее время американскими учёными модернизируется разработка катализатора, в основание которого положены углеродные трубки. Данная разработка позволит в будущем снизить себестоимость автомобиля, при производстве которого можно обойтись без таких дорогостоящих металлов, как платина.
Подведем итоги
Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.
Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.
Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.
Усовершенствание конструкции поршневого двигателя, отказ от КШМ: бесшатунный двигатель, а также двигатель без коленвала. Особенности и перспективы.
Конструктивные особенности двигателей GDI с непосредственным впрыском от моторов с распределенным впрыском топлива. Режимы работы, неисправности GDI.
Двигатель семейства FSI: отличия, особенности, плюсы и минусы силового агрегата данного типа. Распространенные проблемы двигателей FSI, обслуживание мотора.
Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.
Дизельный мотор TDI. Отличительные особенности двигателя данного типа. Преимущества и недостатки, ресурс, особенности турбонаддува. советы по эксплуатации.
Что нужно знать о моторах на Рендж Ровер перед покупкой такого автомобиля б/у. С каким двигателем лучше взять данный автомобиль и почему.
Статья о водородном моторе: история, особенности его эксплуатации, плюсы и минусы использования, модели автомобилей. В конце статьи — видео о двигателе на воде.
Водород занимает лидирующую позицию среди всех прочих источников альтернативной энергии не случайно – он максимально экологичен, имеет возобновляемый ресурс, а также обладает максимальным КПД в сравнении с классическими двигателями, функционирующими на бензине и дизеле.
Однако помимо неоспоримых преимуществ, водородный двигатель обладает и рядом недостатков, пока не позволяющих сделать его массовым и полностью вытеснить «вредные» бензиновые и дизельные моторы.