Система непосредственного впрыска топлива в бензиновых двигателях: принцип работы

Что же лучше — таблица?

Предлагаю подумать, составил таблицу по плюсам того и другого типов

Распределенный (MPI) плюсы Непосредственный (GDI) плюсы
ДешевыйМощнее (около 5%)
ПростойМеньший расход (до 10%)
Работают больше без очисткиЭкологичнее
Не требовательны к качеству топлива
Инжектора проще конструкция

Как видите и тот и другой тип имеют весомые преимущества перед другим, видимо пока существуют оба.

Сейчас видео версия смотрим.

А теперь голосование, как ВЫ считаете что лучше – MPI (распределенный) или GDI (непосредственный)?

НА этом заканчиваю, думаю, моя статья и видео были вам полезны. Читайте наш АВТОБЛОГ, подписывайтесь на обновления.

(11 голосов, средний: 4,55 из 5)

Похожие новости

Можно ли заливать дизельное масло в бензиновый двигатель. Какие .

Расточка блока цилиндров. Зачем нужно двигателю и можно ли сдела.

Двигатели, оснащенные системой распределенной подачей топлива, имеют более высокие показатели экономичного расхода ТС и низкий уровень токсичности отработанных газов.

Система выпуска

Эта система была приспособлена к двигателю с непосредственным впрыском бензина. До настоящего времени система очисткиотработавших газов двигателей с непосредственном впрыском была проблематичной. Это связано с тем, что образующиеся при работе на бедных гомогенных и послойных смесях оксиды азота не могут быть восстановлены в обычных трехкомпонентных нейтрализаторах до уровня, допускаемого законодательством. Поэтому для двигателей с непосредственным впрыском бензина применяют накопительные нейтрализаторы, которые способны удерживать оксиды азота при работе на бедных смесях. При заполнениинейтрализатора до предела производится перевод его на режим регенерации, в процессе которого накопленные в нем оксиды азотавыводятся и восстанавливаются до азота.

Охлаждение отработавших газовОхлаждение отработавших газов применяется для того, чтобы поддерживать температуру в накопительном нейтрализаторе в диапазоне от 250 до 500 °C. Только в этом температурном диапазоне обеспечивается удерживание оксидов азота в накопительном нейтрализаторе. Накопительный нейтрализатор необходимо охлаждать также из-за снижения его аккумулирующей способности при перегреве до температур свыше 850 °C.

Охлаждение выпускного коллектораВ подкапотном пространстве предусмотрен воздуховод, который позволяет преднамеренно охлаждать выпускной коллектор направляемым на него потоком свежего воздуха и таким образом снижать температуру отработавших газов.

Раздвоенный выпускной трубопроводЭтот трубопровод расположен перед накопительным нейтрализатором. Его установка является вторым мероприятием поснижению температуры отработавших газов и соответственно накопительного нейтрализатора. Температура газов снижаетсяза счет увеличения теплоотдачи через развитую поверхность трубопровода.

При одновременном использовании обоих мероприятий удается снижать температуруотработавших газов на 30*100 °C в зависимости от скорости автомобиля.

Предварительный трехкомпонентный нейтрализатор.Этот нейтрализатор встроен в выпускной коллектор. Благодаря близости к двигателю он быстро прогревается до рабочей температуры, при которой начинается очистка отработавших газов. Благодаря этому могут быть выполнены жесткие нормы на выбросы вредных веществ.

НазначениеНейтрализатор служит для каталитического преобразования образующихся при сгорании вредных веществ в безвредные вещества.

Устройство и принцип работы инжекторной системы впрыска

Второе название систем впрыска бензиновых моторов – инжекторная. Основная ее особенность заключается в точной дозировке топлива. Достигается это путем использования в конструкции форсунок. Устройство инжекторного впрыска двигателя включает в себя две составляющие – исполнительную и управляющую.

В задачу исполнительной части входит подача бензина и его распыление. Она включает в себя не так уж и много составных элементов:

  1. Бак.
  2. Насос (электрический).
  3. Фильтрующий элемент (тонкой очистки).
  4. Топливопроводы.
  5. Рампа.
  6. Форсунки.

Но это только основные компоненты. Исполнительная составляющая может в себя включать еще ряд дополнительных узлов и деталей – регулятор давления, систему слива излишков бензина, адсорбер.

В задачу указанных элементов входит подготовка топлива и обеспечение его поступления к форсункам, которыми и осуществляется их впрыскивание.

Принцип работы исполнительной составляющей прост. При повороте ключа зажигания (на некоторых моделях – при открытии водительской двери) включается электрический насос, который качает бензин и заполняет им остальные элементы. Топливо проходит очистку и по топливопроводам поступает в рампу, которая соединяет собой форсунки. За счет насоса топливо во всей системе находится под давлением. Но его значение ниже, чем на дизелях.

Открытие форсунок осуществляется за счет электрических импульсов, подаваемых с управляющей части. Эта составляющая системы впрыска топлива состоит из блока управления и целого комплекта следящих устройств – датчиков.

Эти датчики отслеживают показатели и параметры работы – скорость вращения коленчатого вала, количества подаваемого воздуха, температуры ОЖ, положения дросселя. Показания поступают на блок управления (ЭБУ). Он эту информацию сравнивает с данными, занесенными в память, на основе чего определяется длина электрических импульсов, подаваемых на форсунки.

Электроника, используемая в управляющей части системы впрыска топлива, нужна, чтобы высчитать время, на которое должна открыться форсунка при том или ином режиме работы силового агрегата.

Виды инжекторов

Но отметим, что это общая конструкция системы подачи бензинового мотора. Но инжекторов разработано несколько, и каждая из них обладает своими конструктивными и рабочими особенностями.

На автомобилях применяются системы впрыска двигателя:

  • центрального;
  • распределенного;
  • непосредственного.

Центральный впрыск считается первым инжектором. Его особенность заключается в использовании только одной форсунки, которая впрыскивала бензин во впускной коллектор одновременно для всех цилиндров. Изначально он был механическим и никакой электроники в конструкции не использовалось. Если рассмотреть устройство механического инжектора, то она схожа с карбюраторной системой, с единственной разницей, что вместо карбюратора использовалась форсунка с механическим приводом. Со временем центральную подачу сделали электронной.

Сейчас этот тип не используется из-за ряда недостатков, основной из которых — неравномерность распределения топлива по цилиндрам.

Распределенный впрыск на данный момент является самой распространенной системой. Конструкция этого типа инжектора расписана выше. Ее особенность заключается в том, что топливо для каждого цилиндра подает своя форсунка.

В конструкции этого вида форсунки устанавливаются во впускном коллекторе и располагаются рядом с ГБЦ. Распределение топлива по цилиндрам дает возможность обеспечить точную дозировку бензина.

Непосредственный впрыск сейчас является самым совершенным типом подачи бензина. В предыдущих двух типах бензин подавался в проходящий поток воздуха, и смесеобразование начинало осуществляться еще во впускном коллекторе. Этот же инжектора по конструкции копирует дизельную систему впрыска.

В инжекторе с непосредственной подачей распылители форсунок располагаются в камере сгорания. В результате компоненты топливовоздушной смеси здесь запускаются в цилиндры по отдельности, и уже в самой камере они смешиваются.

Особенность работы этого инжектора заключается в том, что для впрыскивания бензина требуется высокие показатели давления топлива. И его создание обеспечивает еще один узел, добавленный в устройство исполнительной части – насос высокого давления.

Из каких механизмов состоит система

Следует перечислить, из каких исполнительных механизмов состоит комплекс впрыска топлива инжекторного автомобиля:

Бензонасос работает на нагнетание топливной смеси в специальную рампу. Чтобы давление в этой рампе было все время на определенном уровне на ней установлен механический регулятор давления. Иногда бензонасос и регулятор совмещены.

Форсунки специальные клапаны с регулируемой производительностью, которые имеют электромагнитные прецензионный характер.

Зажигательный модуль специальное устройство, предназначенное для регуляции искрообразования. Включает в себя два независимо работающих канала, которые направлены на поджиг смеси, отдельно в 1 и 4, а также во 2 и 3 цилиндрах.

Регулирование холостого хода эта часть системы обусловлено специальным регулятором, который поддерживает заданные обороты. Сам регулятор представляет собой двигатель шагового типа, он регулирует канал воздуха обводного типа в дроссельную заслонку. Это необходимо для того чтобы двигатель постоянно получал необходимое количество воздуха.

Вентилятор системного охлаждения имеет управление от электрической составляющей автомобиля и работает в зависимости от сигналов ДТОЖ.

Датчик топливного расхода подает постоянный сигнал на маршрутный компьютер или на панель управления и сообщает водителю необходимые показатели. Надо отметить, что этот датчик может работать с погрешностями, так как данный высчитываются по приблизительным показателям.

Адсорбер еще один компонент замкнутой цепи, которая регулирует пары бензина. Чаще всего такой элемент устанавливается на зарубежные автомобиля.


Схема распределенного впрыска топлива

Система непосредственного впрыска: конструктивные особенности

Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:

  • контур высокого давления;
  • бензиновый ТНВД;
  • регулятор давления;
  • топливную рампу;
  • датчик высокого давления;
  • инжекторные форсунки;

Начнем с топливного насоса. Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.

Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.

Датчик высокого давления является устройством, которое измеряет давление в топливной рейке. Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.

Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.

Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.

Как работает система непосредственного впрыска топлива

Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.

  • Послойное смесеобразование задействуется тогда, когда нагрузки на двигатель низкие или средние, а обороты коленвала небольшие. Если просто, в таких режимах смесь несколько обедняется в целях экономии. Стехиометрическое смесеобразование предполагает приготовление такой смеси, которая легко воспламеняется, при этом не является слишком обогащенной.
  • Гомогенное смесеобразование позволяет получить так называемую «мощностную» смесь, которая нужна при больших нагрузках на двигатель. На обедненной гомогенной смеси в целях дополнительной экономии силовой агрегат работает на переходных режимах.
  • Когда задействован режим послойного смесеобразования, дроссельная заслонка широко открыта, при этом впускные заслонки находятся в закрытом состоянии. В камеру сгорания воздух подается с высокой скоростью, возникают завихрения воздушных потоков. Горючее впрыскивается ближе к концу такта сжатия, впрыск производится в область расположения свечи зажигания.

За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1.5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».

В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.

Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта, а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.

Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.

Положительные и отрицательные стороны

Большой опыт применения таких систем позволяет выделить слабые и сильные места.
Преимущества инжекторного двигателя:

  • Повышение экономичности даже на первых системах. Так, снижения расхода удалось добиться уже на «Ниве» от Ваз, где расход снизился сразу на 40%. Сегодня потребление топлива в инжекторном двигателе вдвое меньше, чем в карбюраторном.
  • Расширенные возможности управления ДВС.
  • Улучшение динамических параметров и рост мощности (в среднем на 10-15%).
  • Упрощенный и полностью автоматизированный пуск мотора.
  • Поддержание оборотов ХХ.
  • Возможность обойтись без ручного регулирования системы подачи топлива. Это обусловлено тем, что информацию передают соответствующие датчики (кислорода и позиции коленчатого вала).
  • Проведение самостоятельной диагностики, что упрощает ТО автомобиля. По сути, системы с форсунками от Euro 3 и выше не требуют периодического обслуживания.
  • Поддержание топливного состава, который максимально приближен к стехиометрическому показателю. Как результат, уменьшается выброс опасных веществ, повышается экологичность. К примеру, у первых поколений объем выброса окиси углерода находился на уровне 20-30 грамм /кВт*ч, а на Евро 5 — 1,5 грамма / кВт*ч.
  • Снижение высоты капота, благодаря более удобному расположению рабочих механизмов сбоку мотора, а не над ним.
  • Дополнительная защита машины от злоумышленников. Без получения команды от иммобилайзера ЭБУ запрещает подачу горючего к ДВС.
  • Отсутствие зависимости от положения авто в пространстве. К примеру, в авто с карбюратором возникали трудности с подачей горючего уже при подъеме на 15-градусный уклон.
  • Горючая смесь не накапливается в системе впуска, что исключает воспламенение в случае повреждения системы.
  • Нет зависимости от давления в атмосфере, что позволяет эксплуатировать авто даже в горах и не переживать за возможные сбои.
  • Автоматизация системы подачи топлива. Выполнение всей работы по подготовке горючего берет на себя ЭБУ. Для сравнения в двигателях на карбюраторах многие настройки автовладельцу приходилось делать самостоятельно.

Несмотря на ряд положительных качеств, нельзя не отметить и недостатки инжекторной системы питания. К основным стоит отнести:

  • Повышенные расходы на производство (было актуально до 2005-го).
  • Более строгие требования к составу горючего.
  • Слабая ремонтопригодность узлов из-за полной автоматизации.
  • Подача топлива под высоким давлением, что при аварии может привести к воспламенению. Для защиты применяется контроллер, который при аварии останавливает подачу горючего.
  • Необходимость обслуживания на специальном СТО, где имеется диагностическое оборудование. Соответственно, возрастает и стоимость ремонта. На современном этапе это не так актуально, ведь на сервисах нет дефицита в необходимой аппаратуре и ПО.
  • Зависимость от АКБ и уровня питания.
  • Необходимость периодической очистки форсунок и впускных клапанов. 

Прямой впрыск топлива – хорошо или плохо?

Двигатели с непосредственным впрыском (также используется термин «прямой впрыск», или GDI) начали появляться на автомобилях не так давно. Однако технология набирает популярность и все чаще встречается на моторах новых автомобилей. Сегодня мы в общих чертах постараемся ответить, что такое технология непосредственного впрыска и стоит ли ее опасаться?

Для начала стоит отметить, что главной отличительной особенностью технологии является расположение форсунок, которые размещены непосредственно в головке блока цилиндров, соответственно, и впрыск под огромным давлением происходит напрямую в цилиндры, в отличие от давно зарекомендовавшей себя с лучшей стороны системы впрыска горючего во впускной коллектор.

Прямой впрыск впервые был испытан в серийном производстве японским автопроизводителем Mitsubishi. Эксплуатация показала, что среди плюсов главными преимуществами стали экономичность – от 10% до 20%, мощность – плюс 5% и экологичность. Основной минус – форсунки крайне требовательны к качеству топлива.

Стоит также отметить, что схожая система уже долгие десятилетия успешно устанавливается на дизельные двигатели. Однако именно на бензиновых моторах применение технологии было сопряжено с рядом трудностей, которые до сих пор не были окончательно решены.

В видео с YouTube-канала «Savagegeese» объясняется, что такое прямой впрыск и что может пойти не так в ходе эксплуатации автомобиля с данной системой. В дополнение к главным плюсам и минусам в видеоролике также объясняются тонкости профилактического обслуживания системы.  Кроме того, в ролике затрагивается тема систем впрыска во впускные каналы, которые можно в изобилии наблюдать на более старых моторах, а также моторы, которые используют оба метода впрыска горючего. Наглядно используя диаграммы Bosch, ведущий объясняет, как все это работает.

Чтоб узнать все нюансы, предлагаем посмотреть видео ниже (включение перевода субтитров поможет разобраться, если вы не очень хорошо знаете английский). Для тех, кому не слишком интересно смотреть, об основных плюсах и минусах непосредственного впрыска бензина можно прочитать ниже, после видео:

Итак, экологичность и экономичность – благие цели, но вот чем чревато использование современной технологии в вашем автомобиле:

Минусы

1. Очень сложная конструкция.

2. Отсюда вытекает вторая важная проблема. Поскольку молодая бензиновая технология подразумевает внесение серьезных изменений в конструкцию головок цилиндров двигателя, конструкцию самих форсунок и попутное изменение иных деталей мотора, к примеру ТНВД (топливный насос высокого давления), стоимость автомобилей с непосредственным впрыском топлива выше.

3. Производство самих частей системы питания также должно быть крайне точным. Форсунки развивают давление от 50 до 200 атмосфер.

Прибавьте к этому работу форсунки в непосредственной близости со сгораемым топливом и давлением внутри цилиндра и получите необходимость производства очень высокопрочных компонентов.

4. Поскольку сопла форсунок смотрят в камеру сгорания, все продукты сгорания бензина также осаждаются на них, постепенно забивая или выводя форсунку из строя. Это, пожалуй, самый серьезный минус использования конструкции GDI в российских реалиях.

5. Помимо этого необходимо очень тщательно следить за состоянием двигателя. Если в цилиндрах начинает происходить угар масла, продукты его термического распада достаточно быстро выведут из строя форсунку, засорят впускные клапаны, образовав на них несмываемый налет из отложений. Не стоит забывать, что классический впрыск с форсунками, расположенными во впускном коллекторе, хорошо очищает впускные клапаны, омывая их под давлением топливом.

6. Дорогой ремонт и необходимость профилактического обслуживания, которое тоже недешевое.

Помимо этого, в видео также объясняется, что при ненадлежащей эксплуатации на автомобилях с прямым впрыском могут наблюдаться загрязнение клапанов и ухудшение производительности, в особенности на турбированных двигателях.

Плюсы

1. Экологичность.

2. Экономичность (правда, здесь нужно сделать оговорку: реальная экономия бензина доступна в условиях, близких к идеальным) – экономия 5-10%.

3. Немного более высокая мощность.

4. GDI при непосредственном попадании топлива в цилиндр охлаждает головку поршня.

5. Происходит лучшее смешение топливовоздушной смеси в цилиндрах.

6. Меньше детонация.

7. Требуется гораздо меньше топлива, смесь при определенных условиях работы мотора может обедняться до 30:1

8. Процесс работы двигателя точнее контролируется при помощи компьютера.

Перспективы

Характерной чертой последнего времени стал даунсайзинг автомобильных двигателей. Это уменьшение рабочего объёма, габаритов и массы силовой установки. Отказываться при этом от мощностных и динамических показателей никто не стал, более того, автомобили из-за требований по безопасности и насыщенности системами обеспечения комфорта заметно потяжелели. Мощность должна быть дополнительно увеличена.

Параллельно ужесточаются экологические нормы. Если раньше их обеспечивали за счёт расхода лишнего бензина, иначе уменьшить процентное содержание вредных веществ было затруднительно, то сейчас на это введены ограничения по суммарному выделению углекислого газа. А с этим веществом бороться невозможно, это обязательная и значительная часть выхлопных газов. Можно лишь повысить КПД двигателя и уменьшить рабочий объём.

Точно управлять горением в таких условиях на всех режимах можно только системой из комбинированного MPI-GDI впрыска с наддувом от турбины. Так и строятся самые современные бензиновые двигатели. Чище их пока только электромобили или гибриды с иными термическими циклами в ДВС.

Виды систем распределенного впрыска

Современные системы распределенного типа подачи топлива разделены на несколько видов:

  • По принципу работы – системы импульсной и непрерывной подачи ТС;
  • По способу управления – системы на механическом и электронном типе управления;
  • По времени открытия топливных форсунок – системы с попарно-параллельным впрыском (при подаче топлива попарно), одновременным впрыском (при одновременной подаче топлива во все форсунки), фазированным впрыском (при индивидуальной подаче топлива для каждой форсунки), прямым впрыском (подача топлива осуществляется в камеру сгорания цилиндра, минуя впускной коллектор).

Наиболее распространенными системами распределенной подачи ТС являются системы KE-Jetronic, K-Jetronic и L-Jetronic, разработанные компанией Bosch.

Система K-Jetronic относится к механическим топливным системам с непрерывной подачей ТС.

Система типа KE-Jetronic одна из разновидностей механической топливной системы непрерывного типа с электронным способом управления.

Система L-Jetronic представляет собой систему импульсной подачи топлива с электронным типом управления.

Система распределенной подачи ТС состоит из следующих подсистем и компонентов:

  • систем подачи и очистки топлива и воздуха;
  • системы сжигания бензиновых испарений;
  • системы выпуска и сжигания отработанных газов;
  • электронного блока управления с входными датчиками
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий